首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Fenton's treatment on the biodegradability of chromium-complex azo dyes.
Authors:I Arslan-Alaton  I Kabda?li  S Teksoy
Affiliation:Istanbul Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34469 Maslak, Istanbul, Turkey.
Abstract:Pretreatment of an acid dyebath effluent bearing a new generation chromium complex azo dyestuff (C0 = 350 mg/L) with Fenton's reagent was investigated. Preliminary optimisation (baseline) experiments were conducted to determine the Fe2+, H2O2 concentrations and pH required to the highest possible COD and colour removals. Kinetic studies were carried out at varying temperatures (20 degrees C < T < 70 degrees C) to establish a relationship between COD abatement and H2O2 consumption. The activation energy found for catalytic H2O2 decomposition (Ea = 9.8 kJ/mol) appeared to be significantly less than that of fermentative (Ea = 23 kJ/mol) and of thermal (Ea = 76 kJ/mol) H2O2 decomposition, implying that H2O2 decomposition during the Fenton's reaction occurs more spontaneously. The experimental studies indicated that approximately 30% COD and complete colour removal could be achieved under optimised Fenton pretreatment conditions (Fe2+ = 2 mM; H2O2 = 30 mM; pH = 3; at T = 60 degrees C). Long-term activated sludge experiments revealed that although the raw and pretreated acid dyebath effluent contained practically the same amount of "readily biodegradable" COD (inert COD fraction < or = 10%), biodegradation of the chemically pretreated acid dye effluent proceeded appreciably faster than that of the untreated acid dyebath effluent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号