首页 | 本学科首页   官方微博 | 高级检索  
     


Embedding Cartesian Products of Graphs into de Bruijn Graphs
Authors:Thomas Andreae,Michael Nö  lle,Gerald Schreiber
Affiliation:aMathematisches Seminar, Universität Hamburg, Bundesstraße 55, D-20146, Hamburg, Germany;bInstitut fur Softwaretechnik und Parallele Systeme, Universität Wien, Lichtensteinstraße 22, A-1090, Vienna, Austria;cTechnische Informatik I, TU Hamburg–Harburg, Harburger Schloßstraße 20, D-21071, Hamburg, Germany
Abstract:Given a Cartesian productG=G1× … ×Gm(m≥ 2) of nontrivial connected graphsGiand then-dimensional baseBde Bruijn graphD=DB(n), it is investigated whether or notGis a spanning subgraph ofD. Special attention is given to graphsG1× … ×Gmwhich are relevant for parallel computing, namely, to Cartesian products of paths (grids) or cycles (tori). For 2-dimensional de Bruijn graphsD, we present a theorem stating that certain structural assumptions on the factorsG1, …,Gmensure thatG1× … ×Gmis a spanning subgraph ofD. As corollaries, we obtain results improving previous results of Heydemannet al.(J. Parallel Distrib. Comput.23 (1994), 104–111) on embedding grids and tori into de Bruijn graphs. Specifically, we obtain that (i) any gridG=G1× … ×Gmis a spanning subgraph ofD=DB(2) provided that |G| = |D|, and (ii) any torusG=G1× … ×Gmis a spanning subgraph ofD=DB(2) provided that |G| = |D| and that theGiare cycles of even length ≥4. We show that these results have consequences for the casen> 2, too: for evenn, we apply our results to obtain embeddings of grids and toriGinto de Bruijn graphsDB(n) with dilationn/2, where the baseBis a fixed integer ≥2, andnis big enough to ensure |G| ≤ |DB(n)|. We also contrast our results forn= 2 with nonexistence results forn≥ 3 and briefly describe experimental results in the area of parallel image processing.
Keywords:de Bruijn graphs   Cartesian product   grids   tori   graph embeddings   dilation   processor networks   parallel image processing   massively parallel computers
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号