首页 | 本学科首页   官方微博 | 高级检索  
     


Shear resonance mode decoupling to determine the characteristic matrix of piezoceramics for 3-D modeling
Authors:Pardo Lorena  García Alvaro  de Espinosa Francisco Montero  Brebøl Klaus
Affiliation:Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain. lpardo@icmm.csic.es
Abstract:The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号