首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental study of heat transfer in an open thermosyphon
Authors:Etsuya Imai  Yasuaki Shiina  Makoto Hishida
Abstract:An experimental study was performed on heat transfer of an open thermosyphon with constant wall heat flux. Water and aqueous glycerin were used as working fluids. The experimental range of modified Rayleigh number was 1 × 103 < Ram < 3 × 105. The average and local heat transfer coefficients, vertical temperature distributions of the tube wall and fluid at the centerline of the tube, and temperature fluctuations of the fluid were measured. Flow patterns were observed by adding tracer powder to the fluid. Fluid velocities were measured by laser Doppler velocimeter. Experimental results indicate that, for a water thermosyphon, there are three regimes where different heat transfer characteristics and flow patterns occur. For 1 × 103 < Ram < 3 × 103, the flow was laminar and the thermal boundary layer reached the center of the tube. Heat was exchanged between the wall and descending flow. Wall temperature increased in the downward direction. For 4 × 103 < Ram < 3 × 104, no turbulence was observed in the flow and the thermal boundary layer was localized in the vicinity of the wall. The wall temperature increased upward. For 3 × 104 < Ram < 3 × 105, flow was considerably disturbed by the mixing of upward and downward flow in the upper part of the tube. However, the flow was laminar in the lower part of the tube. Reduction of the flow rate induced by the flow mixing at high Ram can be one of the major causes of the deterioration of heat transfer from Lighthill's theory. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 301–312, 2001
Keywords:thermosyphon  natural convection  heat transfer  thermal boundary layer temperature distribution  flow patterns
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号