首页 | 本学科首页   官方微博 | 高级检索  
     

基于DBN-MPA-LSSVM的无绝缘轨道电路故障诊断研究
引用本文:林俊亭,王 帅. 基于DBN-MPA-LSSVM的无绝缘轨道电路故障诊断研究[J]. 电子测量与仪器学报, 2022, 36(9): 37-44
作者姓名:林俊亭  王 帅
作者单位:兰州交通大学自动化与电气工程学院 兰州 730070
基金项目:国家自然科学基金(52162050)、中国铁道科学研究院科研基金(2021YJ205)项目资助
摘    要:针对区间无绝缘轨道电路故障类型复杂、诊断精度低等问题,从故障特征提取和特征分类两方面出发,提出了一种深度置信网络(DBN)和海洋捕食者算法(MPA)优化最小二乘支持向量机(LSSVM)的故障诊断方法。 首先,将集中监测数据和状态标签输入到 DBN,以半监督的方式进行降维和特征提取,从而挖掘轨道电路不同故障特征信息;然后,采用 MPA 智能算法对LSSVM 的惩罚因子和核函数参数进行寻优并建立最优 MPA-LSSVM 诊断模型;最后,将 DBN 提取的特征样本导入诊断模型进行轨道电路的故障分类识别。 DBN-MPA-LSSVM 诊断模型充分利用了 DBN 在特征提取过程中的逐层提取优势以及 LSSVM 在解决小样本情况下高维模式识别的优势。 实验验证与对比分析表明,DBN-MPA-LSSVM 模型测试集准确率为 98. 33%,MPA 优化算法较 PSO、GWO、GA 算法模型诊断准确率分别提高了 6. 11%、3. 89%、3. 33%,平均准确率为 97. 98%,为基于数据驱动的轨道电路故障诊断技术提供了一种新的方法。

关 键 词:无绝缘轨道电路  深度置信网络  海洋捕食者算法  最小二乘支持向量机  故障诊断

Research on fault diagnosis of jointless track circuitbased on DBN-MPA-LSSVM
Lin Junting,Wang Shuai. Research on fault diagnosis of jointless track circuitbased on DBN-MPA-LSSVM[J]. Journal of Electronic Measurement and Instrument, 2022, 36(9): 37-44
Authors:Lin Junting  Wang Shuai
Affiliation:1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University
Abstract:Aiming at the problems of complex fault types and low diagnosis accuracy of section jointless track circuit, a fault diagnosismethod of least squares support vector machine(LSSVM)optimized by deep belief network(DBN)and marine predators algorithm (MPA)is proposed from the two aspects of fault feature extraction and feature classification. Firstly, the centralized monitoring data and statuslabels are input into DBN, and the dimensionality reduction feature extraction is carried out in a semi supervised way, so as to mine thedifferent fault feature information of track circuit. Then, the intelligent algorithm MPA is used to optimize the penalty factor and kernelfunction parameters of LSSVM, and the optimal MPA-LSSVM diagnosis model is established. Finally, the feature samples extracted byDBN are introduced into the diagnosis model for fault classification and identification of track circuit. DBN-MPA-LSSVM diagnosticmodel makes full use of the advantages of layer by layer extraction of DBN in the process of feature extraction and the advantages ofLSSVM in solving high-dimensional pattern recognition in the case of small samples. Experimental validation and comparative analysisshow that the DBN-MPA-LSSVM model test set accuracy is 98. 33%, and the MPA optimization algorithm improves the diagnosisaccuracy by 6. 11%, 3. 89%, and 3. 33% compared with PSO, GWO, and GA algorithm models, respectively, with an averageaccuracy of 97. 98%, which provides a new data-driven rail circuit fault diagnosis technology based on method.
Keywords:jointless track circuit   deep belief network   marine predators algorithm  least squares support vector machine   fault diagnosis
本文献已被 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号