首页 | 本学科首页   官方微博 | 高级检索  
     

基于峭度加权VMD和熵特征的雷达脉内调制识别
引用本文:刘玉欣,田润澜,任 琳,孙 亮. 基于峭度加权VMD和熵特征的雷达脉内调制识别[J]. 电讯技术, 2023, 63(3): 368-374
作者姓名:刘玉欣  田润澜  任 琳  孙 亮
作者单位:空军航空大学 航空作战勤务学院,长春 130022;中国人民解放军93110部队,北京 100843
基金项目:国家自然科学基金资助项目(61571462)
摘    要:针对复杂电磁环境下识别雷达信号脉内调制样式困难以及受噪声影响识别准确率受限的问题,提出了一种将变分模态分解(Variational Mode Decomposition, VMD)与熵特征提取相结合的识别方法。首先,通过基于峭度加权的改进VMD算法对雷达信号进行分解,得到由三个本征模态函数组成的最优分量集合;其次,对各分量分别计算其模糊熵、排列熵和符号熵值,从而实现对熵特征信息提取;最后,将特征向量输入到支持向量机完成识别。相较于其他方法,该方法有着较高的识别准确率和抗噪性能,在2 dB信噪比以上平均识别准确率为94.63%。

关 键 词:雷达脉内调制识别  变分模态分解(VMD)  熵特征  特征融合  支持向量机(SVM)

Radar intra-pulse modulation recognition based on kurtosis weighted VMD and entropy features
LIU Yuxin,TIAN Runlan,REN Lin,SUN Liang. Radar intra-pulse modulation recognition based on kurtosis weighted VMD and entropy features[J]. Telecommunication Engineering, 2023, 63(3): 368-374
Authors:LIU Yuxin  TIAN Runlan  REN Lin  SUN Liang
Affiliation:School of Aviation Operations and Services,Aviation University of Air Force,Changchun 130022,China; Unit 93110 of PLA,Beijing 100843,China
Abstract:In view of the difficulties in identifying the intra-pulse modulation pattern of radar signal in complex electromagnetic environment and the limited recognition accuracy affected by noise,an identification method combining variational mode decomposition(VMD) and entropy feature extraction is proposed.Firstly,the radar signal is decomposed by the improved VMD algorithm based on kurtosis weighting,and the optimal component set composed of three intrinsic mode function is obtained.Secondly,the fuzzy entropy,permutation entropy and symbol entropy of each component are calculated respectively,so as to extract the entropy feature information.Finally,the feature vector is input to support vector machine(SVM) to complete the recognition.Compared with other methods,this method has higher recognition accuracy and anti-noise performance,and the average recognition accuracy above 2 dB signal-to-noise ratio is 94.63%.
Keywords:radar intra-pulse modulation recognition  variational mode decomposition(VMD)  entropy features  feature fusion  support vector machine(SVM)
点击此处可从《电讯技术》浏览原始摘要信息
点击此处可从《电讯技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号