首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient Removal of Hg(II) by Polymer-Supported Hydrated Metal Oxides from Aqueous Solution
Abstract:Chelating PS-EDTA resins modified by metal (Fe, Al, and Zr) oxides were used as adsorbents to remove Hg(II) from aqueous solutions. The modified resins were characterized by BET, FTIR, and XPS. The amino, carboxylate, and the metal oxides on resins exhibited a synergistic effect for Hg(II) removal. It was observed that the modification of PS-EDTA resin not only increased the adsorption of Hg(II) but also accelerated the adsorption rate of Hg(II). The equilibrium data of Hg(II) were best described by the Freundlich isotherm, and the kinetics were found to follow the pseudo-second-order kinetic model. Also, thermodynamic parameters showed that Hg(II) adsorption was endothermic and spontaneous in nature. The increasing the concentration (0.1–2.0 g/L) of NaNO3 in Hg(II) solution did not affect the adsorption of Hg(II). Moreover, the competitive adsorption indicated that the modified resins had higher selectivity towards Hg(II) over Cd(II), Pb(II), Zn(II), or Cu(II) in a binary system. All of the above results indicated that the modified resin was an efficient and reusable adsorbent for Hg(II) removal due to its simple preparation, high adsorption capacity, fast adsorption rate, ionic strength independence, high selectivity, and good reusability. These properties are of potential application in the fixed-bed continuous-flow column for Hg(II) removal from wastewaters.
Keywords:adsorption  Hg(II)  metal oxides  PS-EDTA resin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号