首页 | 本学科首页   官方微博 | 高级检索  
     


Peak Capacity in Field-Flow Fractionation
Abstract:Abstract

Field-flow fractionation (FFF) peak capacity values have been computed with only two major assumptions: first, the plate height is supposed the sum of only two contributions, axial molecular diffusion and transversal nonequilibrium, and second, the steric effect has been neglected in the equations of retention and peak broadening.

Several reduced parameters have been defined to generalize the equations and limit the number of variable parameters. It appears that among the already implemented FFF subtechniques for which the elution spectrum is an explicit function of the principal dimension, or mass, of the retained sample (which excludes electrical FFF), sedimentation FFF has some peculiar characteristics due to the fact that the field-induced velocity depends on a particular sample, while in thermal and flow FFF it is the same for all samples of a given type under fixed experimental conditions. For example, in sedimentation FFF, the axial diffusion contribution to the plate height persists at a much larger reduced eluant velocity than for the other techniques.

The effect on the peak capacity of the retention volume, the channel length, the eluant velocity as well as the influence of detection limit and analysis time have been studied. Simple relationships between peak capacity and these parameters are established in the high retention and negligible axial diffusion limits which previal in most experimental situations, and deviations from these limits are discussed. It is shown that for all three
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号