首页 | 本学科首页   官方微博 | 高级检索  
     


Mass Transport from Single Droplets in Imposed Electric Fields
Abstract:Abstract

The influence of electric charge phenomena on mass transfer in systems involving droplets in a continuous medium is of increasing importance. The enhanced transport behavior of droplets in imposed fields on mass transfer and the influence of naturally occurring charges on droplets, particularly in the atmosphere, are both subjects of current interest. The objective of this study is to elucidate the hydrodynamic and mass transfer effect of imposed fields on charged single droplets. Investigations of both static and pulsed electric fields are reported.

The experimental approach is based on the suspension of single droplets in a precisely machined expanding channel. A stationary, saturated water droplet is fluidized by the upflow of 2-ethylhexanol. This arrangement allows precise photographic monitoring of droplet size and shape as well as the hydrodynamics of both phases in the region of the interface.

Baseline continuous-phase mass transfer studies with internally circulating droplets corroborate earlier studies with the same system. The effect of the accumulation of unavoidable surfactant on droplet circulation and mass transport rate at long exposure times is reported. The imposition of a static electric field in the axial direction caused distortion of droplets into prolate spheroidal shape.

An electric field pulsed at a tuned frequency is observed to cause oscillation of droplets between prolate-and oblate-spheroidal shapes. In addition to frequency and field amplitude, the interfacial properties of the fluid system as well as viscosities and densities of the two phases influence the oscillation. The effect of the pulsation of the field on mass transfer to the continuous phase is reported. These data are compared with results for both nonoscillating mass transfer and theoretical models.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号