首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,Characterization, and Analytical Applications of a New Composite Cation Exchange Material Acetonitrile Stannic(IV) Selenite: Adsorption Behavior of Toxic Metal Ions in Nonionic Surfactant Medium
Abstract:A composite cation exchange material acetonitrile stannic(IV) selenite was prepared under different experimental conditions. The ion exchange capacity of the material was improved from 0.75 to 1.83 meq g?1 in comparison to its inorganic counterpart, stannic selenite. The material was characterized on the basis of X-ray, TGA, FTIR, and SEM studies. Ion-exchange capacity, pH titration, elution behavior, and distribution studies were also carried out to determine the preliminary ion-exchange properties of the material. Furthermore, it was investigated that this ion exchange material has a good reusability after 8 times regeneration. The sorption behavior of metal ions was studied in nonionic surfactants namely triton x-100 and tween. On the basis of distribution coefficient studies, several binary separations of metal ions viz- Pb2+-Th4+, Ni2+-Th4+, Ni2+-Zn2+, Cu2+-Ce4+, Al3+-Bi3+, and Al3+Zn2+ was achieved on the packed column of this ion exchange material. The practical applicability of this cation-exchanger was demonstrated in the separation of Th4+ from a synthetic mixture of Th4+, Ca2+, Sr2+, Ni2+, and Mg2+ as well as Cu2+ and Zn2+ from a brass alloy sample. Thus, all the studies suggest that acetonitrile stannic(IV) selenite has excellent potential for the removal of metal ionic pollutant species from aqueous media effectively.
Keywords:acetonitrile stannic(IV) selenite  heavy metals  nonionic surfactants  organic-inorganic ion exchange material  selective separation  synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号