首页 | 本学科首页   官方微博 | 高级检索  
     

基于双阈值的增强型AdaBoost快速算法
引用本文:严云洋,郭志波,杨静宇. 基于双阈值的增强型AdaBoost快速算法[J]. 计算机工程, 2007, 33(21): 172-174
作者姓名:严云洋  郭志波  杨静宇
作者单位:南京理工大学计算机科学与技术学院,南京,210094;淮阴工学院计算机工程系,淮安,223001;南京理工大学计算机科学与技术学院,南京,210094
基金项目:国家自然科学基金 , 江苏省高校自然科学基金 , 江苏省科技攻关项目 , 淮安市科技发展基金
摘    要:在应用AdaBoost算法的人脸检测中,针对训练时间太长及权重调整过适应等问题,提出一种基于特征值等分和双阈值的增强型AdaBoost快速训练算法,给出了双阈值的快速搜索方法。在MIT-CBCL人脸和非人脸训练库上对算法进行了实现。实验结果显示,改进后的双阈值增强型AdaBoost算法简化了训练过程,训练速度提高50倍,收敛速度也更快。使用训练得到的检测器对MIT+CMU人脸测试库进行了测试,结果表明,该方法在检测精度和速度等方面都优于单阈值方法。

关 键 词:dual-AdaBoost  双阈值  人脸检测
文章编号:1000-3428(2007)21-0172-03
修稿时间:2007-06-04

Fast Enhanced AdaBoost Algorithm Based on Dual-threshold
YAN Yun-yang,GUO Zhi-bo,YANG Jing-yu. Fast Enhanced AdaBoost Algorithm Based on Dual-threshold[J]. Computer Engineering, 2007, 33(21): 172-174
Authors:YAN Yun-yang  GUO Zhi-bo  YANG Jing-yu
Affiliation:(1. School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094; 2. Department of Computer Engineering, Huaiyin Institute of Technology, Huai’an 223001)
Abstract:Aiming at some problems of too much training time and weight adjustment over fitting in face detection by using AdaBoost.This paper proposes enhanced dual-AdaBoost algorithm based on feature-value-division and dual-threshold,which makes training faster and better.It gives a method to get dual-threshold,and presents the improved mode of weight adjustment.Experimental results on MIT-CBCL training data set illustrate that the dual-AdaBoost makes training process converge quickly,and the training time is as 1/50 as before.Experimental results on MIT CMU with the detectors show that the detection speed and precision under the dual-threshold are better than single-threshold method.
Keywords:dual-AdaBoost  dual-threshold  face detection
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号