首页 | 本学科首页   官方微博 | 高级检索  
     


Ghezeljeh nanoclay as a new natural adsorbent for the removal of copper and mercury ions:Equilibrium,kinetics and thermodynamics studies
Authors:Majid Soleimani  Zahra Hassanzadeh Siahpoosh
Affiliation:Department of Chemistry, Imam Khomeini International University (IKIU), Qazvin, Iran
Abstract:Heavy metal determination was carried out by applying the solid phase extraction (SPE) method in batch mode followed by atomic absorption spectroscopy (AAS) and inductively coupled plasma atomic emission spectrosco-py (ICP-AES) from aqueous solutions using Ghezeljeh montmoril onite nanoclay as a new natural adsorbent. The Ghezeljeh clay is characterized by using Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Mi-croscopy–Energy Dispersive Spectrometry (SEM–EDS) and X-ray Diffractometry (XRD) and X-ray Fluorescence (XRF). The results of XRD and FT-IR of nanoclay confirm that montmoril onite is the dominant mineral phase. Based on SEM images of Ghezeljeh clay, it can be seen that the distance between the plates is Nano. The effects of varying parameters such as initial concentration of metal ions, pH and type of buffer solutions, amount of ad-sorbent, contact time, and temperature on the adsorption process were examined. The effect of various interfer-ing ions was studied. The adsorption data correlated with Freundlich, Langmuir, Dubinin–Radushkevich (D–R), and Temkin isotherms. The Langmuir and Freundlich isotherms showed the best fit to the equilibrium data for Hg(I ), but the equilibrium nature of Cu(II) adsorption has been described by the Langmuir isotherm. The kinetic data were described with pseudo-first-order, pseudo-second-order and double-exponential models. The adsorp-tion process follows a pseudo-second-order reaction scheme. Calculation ofΔG0,ΔH0 andΔS0 showed that the nature of Hg(II) ion sorption onto the Ghezeljeh nanoclay was endothermic and was favored at higher temper-ature, and the nature of Cu(II) ion sorption was exothermic and was favored at lower temperature.
Keywords:Montmoril onite  Thermodynamic  Kinetic  Mercury  Copper
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号