首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical Modeling and Microbiological Verification of Ohmic Heating of a Multicomponent Mixture of Particles in a Continuous Flow Ohmic Heater System with Electric Field Parallel to Flow
Authors:Pitiya Kamonpatana  Hussein M H Mohamed  Mykola Shynkaryk  Brian Heskitt  Ahmed E Yousef  Sudhir K Sastry
Affiliation:1. Dept. of Food Science and Technology, Kasetsart Univ., , Thailand;2. Dept. of Food Hygiene and Control, Cairo Univ., , Egypt;3. Dept. of Food, Agricultural and Biological Engineering, The Ohio State Univ., , U.S.A;4. Dept. of Food Science and Technology, The Ohio State Univ., , U.S.A
Abstract:To accomplish continuous flow ohmic heating of a low‐acid food product, sufficient heat treatment needs to be delivered to the slowest‐heating particle at the outlet of the holding section. This research was aimed at developing mathematical models for sterilization of a multicomponent food in a pilot‐scale ohmic heater with electric‐field‐oriented parallel to the flow and validating microbial inactivation by inoculated particle methods. The model involved 2 sets of simulations, one for determination of fluid temperatures, and a second for evaluating the worst‐case scenario. A residence time distribution study was conducted using radio frequency identification methodology to determine the residence time of the fastest‐moving particle from a sample of at least 300 particles. Thermal verification of the mathematical model showed good agreement between calculated and experimental fluid temperatures (P > 0.05) at heater and holding tube exits, with a maximum error of 0.6 °C. To achieve a specified target lethal effect at the cold spot of the slowest‐heating particle, the length of holding tube required was predicted to be 22 m for a 139.6 °C process temperature with volumetric flow rate of 1.0 × 10?4 m3/s and 0.05 m in diameter. To verify the model, a microbiological validation test was conducted using at least 299 chicken‐alginate particles inoculated with Clostridium sporogenes spores per run. The inoculated pack study indicated the absence of viable microorganisms at the target treatment and its presence for a subtarget treatment, thereby verifying model predictions.
Keywords:Clostridium sporogenes  mathematical model  multicomponent mixture  Ohmic heating  verification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号