首页 | 本学科首页   官方微博 | 高级检索  
     


Size effect in fracture of unidirectional composite plates
Authors:G.J. Dvorak  A.P. Suvorov
Affiliation:(1) Department of Mechanical Engineering, Aeronautical Engineering and Mechanics 5003JEC, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590. e-mail
Abstract:Fracture of notched, unidirectionally reinforced composite plates with well-bonded ductile matrices is typically preceded by the formation of long, discrete plastic shear zones aligned in the fiber direction. Onset of fracture is associated with a critical tension stress in a certain small process zone ahead of the notch tip; the critical stress is often equal to the tensile strength of the unnotched composite plate. Length of the shear zones can be estimated by plastic limit-analysis, and the local tension stress ahead of the notch found by superposition of the stress caused by remotely applied loads with the stress induced by the shear tractions in the plastic zone, which is shown to be dominated by a logarithmic singularity. In as-fabricated boron-aluminum composites, this fracture mechanism was analyzed and confirmed by numerous experiments (G.J. Dvorak, J. Zarzour and Y. Benveniste, Engineering Fracture Mechanics 42, 501–517, 1992). Since the notch tip field is not described by a stress intensity factor, experimental notched strength data cannot be interpreted in terms of a single material property, such as toughness. An alternative scaling procedure is outlined for prediction of notched strength of wide plates on the basis of data obtained from small size specimens. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号