首页 | 本学科首页   官方微博 | 高级检索  
     


Cellular automaton model of ventricular fibrillation
Authors:Mitchell  RH Bailey  AH Anderson  J
Affiliation:Department of Electrical and Electronic Engineering, University of Ulster, Co. Antrim, Northern Ireland.
Abstract:A theoretical analysis of ventricular fibrillation and the requirements for fibrillation are performed using a discrete element neighborhood (cellular automaton) model of ventricular conduction. The model is configured as a 2500 element rectangular grid on the surface of a cylinder. It is shown that vulnerability to fibrillation is strongly influenced by excited state duration which primarily determines the nature of the underlying reentry activity. As excited state duration is increased fibrillation changes from "coarse" macroreentrant activity to the more chaotic "fine" fibrillation sustained by multiple wavelets of microreentry. In general, defibrillation is achieved by a stimulus strong enough to depolarize the majority of relative refractory elements. The threshold for defibrillation is increased for the more irregular microreentrant fibrillation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号