首页 | 本学科首页   官方微博 | 高级检索  
     

融合标签关系的法律文本多标签分类方法
引用本文:宋泽宇,李旸,李德玉,王素格. 融合标签关系的法律文本多标签分类方法[J]. 模式识别与人工智能, 2022, 0(2)
作者姓名:宋泽宇  李旸  李德玉  王素格
作者单位:山西大学计算机与信息技术学院;山西财经大学金融学院;山西大学计算智能与中文信息处理教育部重点实验室
基金项目:国家自然科学基金项目(No.62072294,62076158,62106130,61906112);山西省重点研发计划项目(No.201803D421024);山西省研究生创新项目(No.2021Y149)资助。
摘    要:随着大数据技术的快速发展,多标签文本分类在司法领域也催生出诸多应用.在法律文本中通常存在多个要素标签,标签之间往往具有相互依赖性或相关性,准确识别这些标签需要多标签分类方法的支持.因此,文中提出融合标签关系的法律文本多标签分类方法.方法构建标签的共现矩阵,利用图卷积网络捕捉标签之间的依赖关系,并结合标签注意力机制,计算法律文本和标签每个词的相关程度,得到特定标签的法律文本语义表示.最后,融合标签图构建的依赖关系和特定标签的法律文本语义表示,对文本进行综合表示,实现文本的多标签分类.在法律数据集上的实验表明,文中方法获得较好的分类精度和稳定性.

关 键 词:多标签分类  文本表示  图卷积神经网络  标签注意力机制  标签关系

Multi-label Classification of Legal Text with Fusion of Label Relations
SONG Zeyu,LI Yang,LI Deyu,WANG Suge. Multi-label Classification of Legal Text with Fusion of Label Relations[J]. Pattern Recognition and Artificial Intelligence, 2022, 0(2)
Authors:SONG Zeyu  LI Yang  LI Deyu  WANG Suge
Affiliation:(School of Computer and Information Technology,Shanxi University,Taiyuan 030006;School of Finance,Shanxi University of Finance and Economics,Taiyuan 030006;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,Shanxi University,Taiyuan 030006)
Abstract:With the rapid development of big data technology,multi-label text classification spawns many applications in the judicial field.There are multiple element labels in legal texts,and the labels are interdependent or correlated.Accurate identification of these labels requires the support of multi-label classification method.In this paper,a multi-label classification method of legal texts with fusion of label relations(MLC-FLR)is proposed.A graph convolution network model is utilized to capture the dependency relationship between labels by constructing the co-occurrence matrix of labels.The label attention mechanism is employed to calculate the degrees of correlation between a legal text and each label word,and the legal text semantic representation of a specific label can be obtained.Finally,the comprehensive representation of a text for multi-label classification is carried out by combining the dependency relationship and the legal text semantic representation of a specific label.Experimental results on the legal text datasets show that MLC-FLR achieves better classification accuracy and stability.
Keywords:Multi-label Classification  Document Representation  Graph Convolutional Neural Network  Label Attention Mechanism  Label Relation
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号