首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative determination of low density lipoprotein oxidation by FTIR and chemometric analysis
Authors:Henry?S?Lam  Email author" target="_blank">Andrew?ProctorEmail author  John?Nvalala  Manford?D?Morris  W?Grady?Smith
Affiliation:(1) Department of Food Science, University of Arkansas, 2650 N. Young Ave., 72704 Fayetteville, Arkansas;(2) Department of Internal Medicine, Division of Endocrinology, University of Arkansas for Medical Sciences, 72205 Little Rock, Arkansas;(3) Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 72205 Little Rock, Arkansas
Abstract:This study was conducted to develop a quantitative FTIR spectroscopy method to measure LDL lipid oxidation products and determine the effect of oxidation on LDL lipid and protein. In vitro LDL oxidation at 37°C for 1 h produced a range of conjugated diene (CD) (0.14–0.26 mM/mg protein) and carbonyl contents (0.9–3.8 μg/g protein) that were used to produce calibration sets. Spectra were collected from the calibration set and partial least squares regression was used to develop calibration models from spectral regions 4000-650, 3750-3000, 1720-1500, and 1180-935 cm−1 to predict CD and carbonyl contents. The optimal models were selected based on their standard error of prediction (SEP), and the selected models were performance-tested with an additional set of LDL spectra. The best models for CD prediction were derived from spectral regions 4000-650 and 1180-935 cm−1 with the lowest SEP of 0.013 and 0.013 mM/mg protein, respectively. The peaks at 1745 (cholesterol and TAG ester C=O stretch), 1710 (carbonyl C-O stretch), and 1621 cm−1 (peptide C=O stretch) positively correlated with LDL oxidation. FTIR and chemometrics revealed protein conformation changes during LDL oxidation and provided a simple technique that has potential for rapidly observing structural changes in human LDL during oxidation and for measuring primary and secondary oxidation products.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号