首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions
Affiliation:1. School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, People's Republic of China;2. Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian University of Technology, Dalian 116024, People's Republic of China;3. School of Electrical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Abstract:In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l-1 and 10 μS cm-1,respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (De) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.
Keywords:pulsed discharge plasma  TiO2  phenol degradation  discharge conditions  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号