首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化BP神经网络的巷道位移反分析
引用本文:王雪冬,李广杰,尤冰,秦胜伍,彭帅英. 基于粒子群优化BP神经网络的巷道位移反分析[J]. 煤炭学报, 2012, 37(Z1): 38-42
作者姓名:王雪冬  李广杰  尤冰  秦胜伍  彭帅英
作者单位:吉林大学 建设工程学院,吉林 长春 130026
基金项目:中国博士后科学基金资助项目(20100471265)
摘    要:以某煤矿资料为基础,确定出岩体物理力学参数水平,并设计正交试验表。根据巷道边界条件建立几何模型,通过有限元法计算得出的位移值建立起PSO-BP神经网络学习样本,从而得到矿山巷道位移反分析预测岩体物理力学参数模型。研究结果表明:实测位移量与由预测参数计算位移量间的最大误差为3.27%,通过实测位移值反分析求得的岩体物理力学参数值可信,PSO-BP神经网络应用于矿山巷道位移反分析是可行的。

关 键 词:巷道位移;物理力学参数;反分析法;PSO算法;BP神经网络  
收稿时间:2011-11-15

Roadway displacement back analysis based on BP neural network optimized by particle swarm
WANG Xue-dong,LI Guang-jie,YOU Bing,QIN Sheng-wu,PENG Shuai-ying. Roadway displacement back analysis based on BP neural network optimized by particle swarm[J]. Journal of China Coal Society, 2012, 37(Z1): 38-42
Authors:WANG Xue-dong  LI Guang-jie  YOU Bing  QIN Sheng-wu  PENG Shuai-ying
Affiliation:(College of Construction Engineering,Jilin University,Changchun 130026,China)
Abstract:Combined with the example of a coal mine,parameter level of physical and mechanical of rock mass in parameter selection scope was obtained,designed orthogonal test table on this basis.Geometric model was based on roadway boundary conditions,then got the displacement to establish PSO-BP neural network relevant study sample through finite element method,back analysis of displacement for prediction on rock physical and mechanical parameters model was obtained.The calculated result shows that the maximum error between the measured value and calculated displacement value by forecasting parameters is 3.27%.It is credible that physical and mechanical rock parameters can be obtained by means of inverse seeking displacement,so it appears that the PSO-BP network is feasible in mine roadway displacement back analysis.
Keywords:roadway displacement  physical and mechanical parameters  back analysis method  PSO algorithm  BP neural network
本文献已被 CNKI 等数据库收录!
点击此处可从《煤炭学报》浏览原始摘要信息
点击此处可从《煤炭学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号