首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear waves in an elastic tube with variable prestretch filled with a fluid of variable viscosity
Authors:Hilmi Demiray
Affiliation:Department of Mathematics, Isik University, 34980 Sile-Istanbul, Turkey
Abstract:In the present work, by employing the reductive perturbation method to the nonlinear equations of an incompressible, prestressed, homogeneous and isotropic thin elastic tube and to the exact equations of an incompressible Newtonian fluid of variable viscosity, we have studied weakly nonlinear waves in such a medium and obtained the variable coefficient Korteweg-deVries-Burgers (KdV-B) equation as the evolution equation. For this purpose, we treated the artery as an incompressible, homogeneous and isotropic elastic material subjected to variable stretches both in the axial and circumferential directions initially, and the blood as an incompressible Newtonian fluid whose viscosity changes with the radial coordinate. By seeking a travelling wave solution to this evolution equation, we observed that the wave front is not a plane anymore, it is rather a curved surface. This is the result of the variable radius of the tube. The numerical calculations indicate that the wave speed is variable in the axial coordinate and it decreases for increasing circumferential stretch (or radius). Such a result seems to be plausible from physical considerations, like Bernoulli’s law. We further observed that, the amplitude of the Burgers shock gets smaller and smaller with increasing time parameter along the tube axis. This is again due to the variable radius, but the effect of it is quite small.
Keywords:Variable initial stretches  Elastic tubes  Variable coefficient KdV-B equation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号