首页 | 本学科首页   官方微博 | 高级检索  
     


Slack-based multiprocessor scheduling of aperiodic real-time tasks
Authors:Lars Lundberg
Affiliation:1.Blekinge Institute of Technology,Karlskrona,Sweden
Abstract:We provide a constant time schedulability test and priority assignment algorithm for an on-line multiprocessor server handling aperiodic tasks. The so called Dhall’s effect is avoided by dividing tasks in two priority classes based on their utilization: heavy and light. The improvement in this paper is due to assigning priority of light tasks based on slack—not on deadlines. We prove that if the load on the multiprocessor stays below \((3 - \sqrt{5} )/2 \approx 38.197\%\), the server can accept an incoming aperiodic task and guarantee that the deadlines of all accepted tasks will be met. This is better than the current state-of-the-art algorithm where the priorities of light tasks are based on deadlines (the corresponding bound is in that case 35.425%).The bound \((3 - \sqrt{5} )/2\) can be improved if the number of processors m is known. There is a formula for the sharp bound \(U_{\mathit{threshold}}(m) = \frac{3m - 2 - \sqrt{5m^{2} - 8m + 4}}{2(m - 1)}\), which converges to \((3 - \sqrt{5} )/2\) from above as m→∞. For m≥3, the bound is higher (i.e., better) than the corresponding sharp bound for the state-of-the-art algorithm where the priorities of light tasks are based on deadlines.A simulation study also indicates that when m>3 the best effort behavior of the priority assignment scheme suggested here is better than that of the traditional scheme where priorities are based on deadlines.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号