首页 | 本学科首页   官方微博 | 高级检索  
     


Phytic acid interactions in food systems
Authors:Munir Cheryan  Joseph J Rackis
Affiliation:1. Assistant Professor, Department of Food Science , University of Illinois , Urbana, Illinois;2. Research Chemist, Northern Regional Research Center, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture , Peoria, Illinois
Abstract:Phytic acid is present in many plant systems, constituting about 1 to 5% by weight of many cereals and legumes. Concern about its presence in food arises from evidence that it decreases the bioavailability of many essential minerals by interacting with multivalent cations and/or proteins to form complexes that may be insoluble or otherwise unavailable under physiologic conditions. The precise structure of phytic acid and its salts is still a matter of controversy and lack of a good method of analysis is also a problem. It forms fairly stable chelates with almost all multivalent cations which are insoluble above pH 6 to 7, although pH, type, and concentration of cation have a tremendous influence on their solubility characteristics. In addition, at low pH and low cation concentration, phytate‐protein complexes are formed due to direct electrostatic interaction, while at pH >6 to 7, a ternary phytic acid‐mineral‐protein complex is formed which dissociates at high Na concentrations. These complexes appear to be responsible for the decreased bioavailability of the complexed minerals and are also more resistant to proteolytic digestion at low pH. Development of methods for producing low‐phytate food products must take into account the nature and extent of the interactions between phytic acid and other food components. Simple mechanical treatment, such as milling, is useful for those seeds in which phytic acid tends to be localized in specific regions. Enzyme treatment, either directly with phytase or indirectly through the action of microorganisms, such as yeast during bread‐making, is quite effective, provided pH and other environmental conditions are favorable. It is also possible to produce low‐phytate products by taking advantage of some specific interactions. For example, adjustment of pH and/or ionic strength so as to dissociate phytate‐protein complexes and then using centrifugation or ultrafiltration (UF) has been shown to be useful. Phytic acid can also influence certain functional properties, such as pH‐solubility profiles of the proteins and the cookability of the seeds.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号