首页 | 本学科首页   官方微博 | 高级检索  
     

微分求积法与有限元相结合分析带弹性安置质量圆板的横向振动
引用本文:李萍, 陈殿云. 微分求积法与有限元相结合分析带弹性安置质量圆板的横向振动[J]. 工程力学, 2006, 23(5): 52-55.
作者姓名:李萍  陈殿云
作者单位:1.洛阳工业高等专科学校, 洛阳, 471003;2. 河南科技大学, 洛阳, 471039
摘    要:微分求积法(GDQM)是近年来发展起来的一种结构计算方法,但是目前仍存在很多的局限性.而有限元法是一种成熟的计算方法,但是计算比较繁琐.用GDQM与有限元相结合对中心带有弹性安置质量圆板的轴对称自由振动进行了计算分析,同时发挥GDQM精度高、计算量小、收敛快和有限元法十分灵活的优点,使两种方法得到了有机结合,首次提出了一种结构分析的新思路.计算结果与现有文献的结果作了对比,证明方法具有较高的精度.

关 键 词:自由振动  结构分析  微分求积法  有限元  圆板
文章编号:1000-4750(2006)05-0052-04
收稿时间:2004-07-17
修稿时间:2004-07-172004-10-15

COMBINATION OF GENERALIZED DIFFERENTIAL QUADRATURE METHOD AND FINITE ELEMENT METHOD FOR ANALYSIS OF TRANSVERSE VIBRATION OF CIRCULAR PLATES WITH AN ELASTICALLY MOUNTED MASS
LI Ping, CHEN Dian-Yun. COMBINATION OF GENERALIZED DIFFERENTIAL QUADRATURE METHOD AND FINITE ELEMENT METHOD FOR ANALYSIS OF TRANSVERSE VIBRATION OF CIRCULAR PLATES WITH AN ELASTICALLY MOUNTED MASS[J]. Engineering Mechanics, 2006, 23(5): 52-55.
Authors:LI Ping  CHEN Dian-Yun
Affiliation:1.Luoyang College of Technology, Luoyang 471003, China;2. Henan University of Science and Technology, Luoyang 471039, China
Abstract:The generalized differential quadrature method(GDQM)developed recently is more and more widely used in structural analysis,but it is restricted by some conditions.The finite element method(FEM)is a conventional numerical method,but the computational effort is significant.In this paper,GDQM and FEM are combined together to analyze the transverse vibration of circular plates with an elastically mounted mass.This combination first proposed in this paper is a new way to solve the problems with complex domains in structural analysis.It is a rapid,efficient,accurate and flexible numerical method with both the advantages of GDQM and FEM.Comparison with the existing literature has proved that the results obtained by this method are very accurate.
Keywords:free vibration   structural analysis   generalized differential quadrature method   finite element method   circular plates
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《工程力学》浏览原始摘要信息
点击此处可从《工程力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号