Markov decision processes with iterated coherent risk measures |
| |
Authors: | Shanyun Chu |
| |
Affiliation: | Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK |
| |
Abstract: | This paper considers a Markov decision process in Borel state and action spaces with the aggregated (or say iterated) coherent risk measure to be minimised. For this problem, we establish the Bellman optimality equation as well as the value and policy iteration algorithms, and show the existence of a deterministic stationary optimal policy. The cost function, while being allowed to be unbounded from below (in the sense that its negative part needs be bounded by some nonnegative real-valued possibly unbounded weight function), can be arbitrarily unbounded from above and possibly infinitely valued. |
| |
Keywords: | Markov decision process iterated coherent risk measure optimality equation |
|
|