首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive neural network output feedback control for flexible multi-link robotic manipulators
Authors:Belkacem Rahmani  Mohammed Belkheiri
Affiliation:1. Laboratoire de Télécommunications, Signaux et Systèmes, Université Amar Telidji de Laghouat, Laghouat, Algeria b.rahmani@lagh-univ.dz"ORCIDhttps://orcid.org/0000-0001-5445-2123;3. Laboratoire de Télécommunications, Signaux et Systèmes, Université Amar Telidji de Laghouat, Laghouat, Algeria "ORCIDhttps://orcid.org/0000-0003-3937-2381
Abstract:In this paper, a novel approach for adaptive control of flexible multi-link robots in the joint space is presented. The approach is valid for a class of highly uncertain systems with arbitrary but bounded dimension. The problem of trajectory tracking is solved through developing a stable inversion for robot dynamics using only joint angles measurement; then a linear dynamic compensator is utilised to stabilise the tracking error for the nominal system. Furthermore, a high gain observer is designed to provide an estimate for error dynamics. A linear in parameter neural network based adaptive signal is used to approximate and eliminate the effect of uncertainties due to link flexibilities and vibration modes on tracking performance, where the adaptation rule for the neural network weights is derived based on Lyapunov function. The stability and the ultimate boundedness of the error signals and closed-loop system is demonstrated through the Lyapunov stability theory. Computer simulations of the proposed robust controller are carried to validate on a two-link flexible planar manipulator.
Keywords:Flexible robots  neural networks  unmodelled dynamics  high gain observer  feedback linearisation  uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号