首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-criteria end milling parameters optimization of AISI D2 steel using genetic algorithm
Authors:Abdalla Alrashdan  Omar Bataineh  Mohammad Shbool
Affiliation:1. Industrial Engineering Department, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
Abstract:This paper focuses on using multi-criteria optimization approach in the end milling machining process of AISI D2 steel. It aims to minimize the cost caused by a poor surface roughness and the electrical energy consumption during machining. A multi-objective cost function was derived based on the energy consumption during machining, and the extra machining needed to improve the surface finish. Three machining parameters have been used to derive the cost function: feed, speed, and depth of cut. Regression analysis was used to model the surface roughness and energy consumption, and the cost function was optimized using a genetic algorithm. The optimal solutions for the feed and speed are found and presented in graphs as functions of extra machining and electrical energy cost. Machine operators can use these graphs to run the milling process under optimal conditions. It is found that the optimal values of the feed and speed decrease as the cost of extra machining increases and the optimal machining condition is achieved at a low value of depth of cut. The multi-criteria optimization approach can be applied to investigate the optimal machining parameters of conventional manufacturing processes such as turning, drilling, grinding, and advanced manufacturing processes such as electrical discharge machining.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号