首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群算法在Lot-sizing问题中的应用
引用本文:闫萍 焦明海 赵冰梅. 粒子群算法在Lot-sizing问题中的应用[J]. 控制与决策, 2012, 27(7): 1077-1081
作者姓名:闫萍 焦明海 赵冰梅
作者单位:1. 沈阳航空航天大学经济与管理学院,沈阳,110136
2. 东北大学计算中心,沈阳,110819
基金项目:国家自然科学基金青年基金项目(71001074);沈阳航空航天大学博士启动基金项目(11YB11)
摘    要:针对无能力限制的Lot-sizing问题,提出一种改进的离散粒子群优化算法.设计粒子编码为生产设备的调整状态,通过有效的解码程序将粒子解释为生产计划.区别于传统的粒子群算法,算法采用单切点交叉算子来提高算法的局部求精能力,并引入变异算子和速度扰动策略保持种群的多样性,使算法在局部求精和空间探索间取得了较好的平衡.在随机生成的90组测试实例中对算法性能进行仿真实验,结果表明该算法具有良好的性能.

关 键 词:生产计划  Lot-sizing问题  粒子群优化  遗传算子
收稿时间:2010-12-13
修稿时间:2011-05-17

Application of particle swarm optimization algorithm in Lot-sizing problem
YAN Ping,JIAO Ming-hai,ZHAO Bing-mei. Application of particle swarm optimization algorithm in Lot-sizing problem[J]. Control and Decision, 2012, 27(7): 1077-1081
Authors:YAN Ping  JIAO Ming-hai  ZHAO Bing-mei
Affiliation:1(1.School of Economics and Management,Shenyang Aerospace University,Shenyang 110136,China;2.Computer Center,Northeastern University,Shenyang 110819,China.)
Abstract:An improved discrete particle swarm optimization(PSO) algorithm is designed to tackle the general uncapacitated Lot-sizing problem.The encoding scheme of particles is designed in terms of setup states of production units,while an effective decoding procedure translates a particle into a feasible production plan.Different from the traditional PSO algorithm,the improved PSO algorithm incorporates single cutting-point crossover operators to improve the intensification ability of the algorithm.In addition,mutation operators and velocity disturbance strategies are also introduced into the PSO algorithm to keep the diversity of swarm.By using those operators,the proposed algorithm can get good balance between exploitation and exploration.Computational results on 90 randomly generated test instances show the good performance of the proposed PSO algorithm.
Keywords:production planning  Lot-sizing problem  particle swarm optimization  genetic operator
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号