首页 | 本学科首页   官方微博 | 高级检索  
     

限定记忆极端学习机及其应用
引用本文:张弦 王宏力. 限定记忆极端学习机及其应用[J]. 控制与决策, 2012, 27(8): 1206-1210
作者姓名:张弦 王宏力
作者单位:第二炮兵工程大学自动控制工程系,西安,710025
基金项目:国家部委预先研究基金项目(51309060302)
摘    要:为了实现极端学习机(ELM)的在线训练,提出一种限定记忆极端学习机(FM-ELM).FM-ELM以逐次增加新训练样本与删除旧训练样本的方式,提高其对于系统动态变化特性的自适应性,并根据矩阵求逆引理实现了网络输出权值的递推求解,减小了在线训练过程的计算代价.应用于具有动态变化特性的非线性系统在线状态预测表明,FM-ELM是一种有效的ELM在线训练模式,相比于在线贯序极端学习机,FM-ELM具有更快的调节速度和更高的预测精度.

关 键 词:神经网络  极端学习机  在线训练  非线性系统
收稿时间:2011-01-27
修稿时间:2011-05-31

Fixed-memory extreme learning machine and its applications
ZHANG Xian,WANG Hong-li. Fixed-memory extreme learning machine and its applications[J]. Control and Decision, 2012, 27(8): 1206-1210
Authors:ZHANG Xian  WANG Hong-li
Affiliation:(Department of Automatic Control Engineering,The Second Artillery Engineering University,Xi’an 710025,China.)
Abstract:To solve the problem of extreme learning machine(ELM) on-line training,an algorithm,fixed-memory extreme learning machine(FM-ELM),is proposed.FM-ELM adopts the latest training sample and abandons the oldest training sample iteratively to enhance its adaptive capacity.The output weights of FM-ELM are determined recursively based on Sherman-Morrison formula.Thus,the computational cost of FM-ELM training procedure is effectively reduced.Numerical experiments on nonlinear system on-line condition prediction show that FM-ELM has better performance in adjusting speed and prediction accuracy in comparison with on-line sequential extreme learning machine(OS-ELM).
Keywords:neural networks  extreme learning machine  on-line training  nonlinear systems
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号