首页 | 本学科首页   官方微博 | 高级检索  
     

基于纹理聚类的抠图算法
引用本文:阳伟 甘涛 兰刚. 基于纹理聚类的抠图算法[J]. 计算机应用, 2013, 33(11): 3213-3216
作者姓名:阳伟 甘涛 兰刚
作者单位:电子科技大学 电子工程学院,成都 610054
摘    要:针对当图像纹理比较丰富时抠图难的问题,基于K近邻(KNN)抠图算法提出了一种纹理聚类抠图(TCM)方法。该方法首先提取出纹理特征;然后用该纹理特征与颜色和位置特征一起构造新的特征空间;接下来在该特征空间上聚类近邻像素以构造Laplacian抠图矩阵;最后利用闭形解求解不透明度。在基准数据集上的实验结果表明,该方法的总排名有显著提升,对于纹理丰富的图像取得了比较好的抠图效果。

关 键 词:纹理聚类抠图  K近邻抠图  Laplacian矩阵  闭形解  
收稿时间:2013-04-22
修稿时间:2013-06-07

Texture clustering matting algorithm
YANG Wei GAN Tao LAN Gang. Texture clustering matting algorithm[J]. Journal of Computer Applications, 2013, 33(11): 3213-3216
Authors:YANG Wei GAN Tao LAN Gang
Affiliation:School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610054, China
Abstract:To solve the problem that traditional matting methods do not perform well in highly textured regions, a Texture Clustering Matting (TCM) algorithm based on K-Nearest Neighbor (KNN) matting was proposed. First, the texture features were extracted. Second, a new feature space which contained color, position and texture information was constructed. Third, the matting Laplacian matrix was constructed by clustering neighbors in the new feature space. Last, the opacity was solved by using the closed-form solution. The experiments on benchmark datasets indicate that the overall ranking of the proposed method is significantly improved, which achieves relatively leading matting effect for highly textured image.
Keywords:Texture Clustering Matting (TCM)   K-Nearest Neighbor (KNN) matting   Laplacian matrix   closed-form solution
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号