首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应排斥因子的改进粒子群算法
引用本文:陈明 刘衍民. 基于自适应排斥因子的改进粒子群算法[J]. 计算机应用, 2013, 33(8): 2269-2272
作者姓名:陈明 刘衍民
作者单位:1. 遵义师范学院 数学与计算科学学院,贵州 遵义 563002;2. 同济大学 经济与管理学院,上海 200438
基金项目:中国博士后基金资助项目
摘    要:基本粒子群算法在求解复杂的多峰问题时,由于存在较多的局部最优解,算法极易出现早熟现象。为克服这一缺陷,采用蒙特卡洛(Monte Carlo)方法模拟了种群飞行轨迹,得出种群极易陷入局部最优解的原因;在此基础上,通过定义粒子间距离、粒子间最大距离和粒子间平均距离,提出一种自适应控制粒子自身最优位置和种群最优位置间距离的排斥因子(ARF),来提升种群跳出局部最优的能力。为测试提出策略的有效性,在60次独立运行时,基于ARF的改进PSO算法(ARFPSO)在Rosenbrock,Ackley和Griewank函数上所获得的最好值分别为53.82,2.1203和5.32E-004,都优于其他两种对比算法,这表明ARFPSO能有效地跳出局部最优解;算法的复杂度分析表明引入的策略没有增加计算复杂度。

关 键 词:粒子群算法  自适应排斥因子  蒙特卡洛模拟  多峰问题  局部最优解  
收稿时间:2013-02-06
修稿时间:2013-03-13

Improved particle swarm optimization based on adaptive rejection factor
CHEN Ming LIU Yanming. Improved particle swarm optimization based on adaptive rejection factor[J]. Journal of Computer Applications, 2013, 33(8): 2269-2272
Authors:CHEN Ming LIU Yanming
Affiliation:1. School of Mathematics and Computing Science, Zunyi Normal College, Zunyi Guizhou 563002, China2. School of Economics and Management, Tongji University, Shanghai 200438, China
Abstract:As the multimodal complex problem has many local optima, it is difficult for the basic Particle Swarm Optimization (PSO) to effectively solve this kind of problem. To conquer this defect, firstly, Monte Carlo method was used to simulate the fly trajectory of particle, and the reason for falling into local optima was concluded. Then, by defining distance, average distance and maximal distance between particles, an adaptive control factor named Adaptive Rejection Factor (ARF) for controlling local optimum position and global optimum position was proposed to increase the ability for escaping from local optima. In order to test the proposed strategy, three test benchmarks including Rosenbrock, Ackley and Griewank were selected to conduct the analysis of convergence property and statistical property. The 60 times independent runs show that the improved PSO based on ARF (ARFPSO) has the best value of 53.82, 2.1203 and 5.32E-004, which is better than the both contrast algorithms. The results show that ARFPSO can effectively avoid premature phenomenon, and the complexity analysis of the algorithm also shows that the introduced strategy does not increase computational complexity.
Keywords:Particle Swarm Optimization (PSO)   adaptive rejection factor   Monte Carlo simulation   multimodal problem   local optima
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号