首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的不均衡数据学习
引用本文:曹鹏,李博,栗伟,赵大哲.基于粒子群优化的不均衡数据学习[J].计算机应用,2013,33(3):789-792.
作者姓名:曹鹏  李博  栗伟  赵大哲
作者单位:1.东北大学 信息科学与工程学院,沈阳 110004; 2.医学影像计算教育部重点实验室(东北大学), 沈阳 110179
基金项目:国家自然科学基金资助项目(61001047); 中央高校基本科研业务费专项资金资助项目(N110618001)。
摘    要:为了提高重采样算法在不均衡数据学习的性能,提出一种基于粒子群优化的不均衡数据学习方法。通过粒子群优化,以不均衡数据分类评价准则作为目标函数,来优化重采样算法中最佳的采样率,同时对特征进行选择,从而达到最佳的数据分布。该算法在大量UCI数据集上进行了测试,与其他不均衡学习算法进行比较,结果表明该算法具有更高的分类性能; 并验证了同时优化采样率和特征集合,可有效地改进不均衡数据分类效果。

关 键 词:粒子群优化  群体智能  不均衡数据分类  重采样  特征选择  
收稿时间:2012-09-03
修稿时间:2012-10-08

Imbalanced data learning based on particle swarm optimization
CAO Peng LI Bo LI Wei ZHAO Dazhe.Imbalanced data learning based on particle swarm optimization[J].journal of Computer Applications,2013,33(3):789-792.
Authors:CAO Peng LI Bo LI Wei ZHAO Dazhe
Affiliation:1.College of Information Science and Engineering, Northeastern University, Shenyang Liaoning 110004, China;
2.Key Laboratory of Medical Image Computing of Ministry of Education (Northeastern University), Shenyang Liaoning 110179, China
Abstract:In order to improve the classification performance on the imbalanced data, a new Particle Swarm Optimization (PSO) based method was introduced. It optimized the re-sampling rate and selected the feature set simultaneously, with the imbalanced data evaluation metric as objective function through particle swarm optimization, so as to achieve the best data distribution. The proposed method was tested on a large number of UCI datasets and compared with the state-of-the-art methods. The experimental results show that the proposed method has substantial advantages over other methods; moreover, it proves that it can effectively improve the performance on the imbalanced data by optimizing the re-sampling rate and feature set simultaneously.
Keywords:Particle Swarm Optimization (PSO)                                                                                                                        swarm intelligence                                                                                                                        imbalanced data classification                                                                                                                        re-sampling                                                                                                                        feature selection
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号