首页 | 本学科首页   官方微博 | 高级检索  
     


Composites of low bandgap conducting polymer-wrapped MWNT and poly(methyl methacrylate) for low percolation and high transparency
Authors:Myoungho Pyo  Eun Gyoung Bae  Younkyung Cho  Youn Su Jung  KyuKwan Zong
Affiliation:1. Department of Printed Electronics Engineering, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea;2. Institute of Science Education, Division of Science Education, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
Abstract:The composites of multi-walled carbon nanotubes (MWNT) wrapped with low bandgap conjugated polymer and poly(methyl methacrylate) (PMMA) were prepared for transparent conductive films. NIR-absorbing poly(ethyl thieno[3,4-b]thiophene-2-carboxylate) (PTTEt) with Eg of 1.0 eV was used in this study. Upon hybridization with MWNT, PTTEt in an insulating state became partially conductive due to electron transfer from PTTEt to MWNT, meaning that PTTEt can function as conductive glue interconnecting MWNT in a PMMA matrix. The electrical conduction of the composites (PTTEt-MWNT/PMMA), consisting of PTTEt-wrapped MWNT (PTTEt-MWNT/PMMA) and PMMA, showed the percolation at 0.10 wt% MWNT loading, which was ca. 0.18 wt% lower than the composites of MWNT and PMMA (MWNT/PMMA). The maximum conductivity of PTTEt-MWNT/PMMA, on the other hand, was one order of magnitude lower than that of MWNT/PMMA, suggesting that PTTEt incorporation onto MWNT for transparent conductive films is effective within a specific range of MWNT loadings (i.e., between percolation thresholds of MWNT/PMMA and PTTEt–MWNT/PMMA). The comparison of transmittance of PTTEt–MWNT/PMMA (0.18 wt% MWNT) with MWNT/PMMA (0.32 wt% MWNT), possessing the same conductivities (3 × 10?3 S cm?1), showed ca. 10% enhanced transmittance at 550 nm. These results imply that hybridization of low bandgap conjugated polymers with carbon nanotubes can be utilized for the reduction of percolation threshold and the increase of optical transparency without sacrificing conductivities at low MWNT loadings.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号