首页 | 本学科首页   官方微博 | 高级检索  
     

基于隐特征空间的极限学习机模型选择
引用本文:毛文涛 赵中堂 贺欢欢. 基于隐特征空间的极限学习机模型选择[J]. 计算机应用, 2013, 33(6): 1600-1603. DOI: 10.3724/SP.J.1087.2013.01600
作者姓名:毛文涛 赵中堂 贺欢欢
作者单位:1. 河南师范大学 计算机与信息工程学院, 河南 新乡 4530072. 郑州航空工业管理学院 计算机科学与应用系,郑州 450015
基金项目:国家自然科学基金资助项目(51175135);河南省基础与前沿技术研究计划项目(122300410111);河南省重点科技攻关项目(102102210176)
摘    要:针对极限学习机(ELM)中冗余的隐神经元会削弱模型泛化能力的缺点,提出了一种基于隐特征空间的ELM模型选择算法。首先,为了寻找合适的ELM隐层,在ELM中添加正则项,该项为现有隐层空间到低维隐特征空间的映射函数矩阵的Frobenius范数;其次,为解决该非凸问题,采用交替优化的策略,并通过凸二次型优化学习该隐空间;最终自适应得到最优映射函数和ELM模型。分别采用UCI标准数据集和载荷识别工程数据对所提算法进行测试,结果表明,与经典ELM相比,该算法可有效提高预测精度和数值稳定性,与现有模型选择算法相比,该算法预测精度相当,但运行时间则大幅降低。

关 键 词:极限学习机  模型选择  交替优化  隐空间  泛化能力  
收稿时间:2012-12-05
修稿时间:2013-01-16

Model selection of extreme learning machine based on latent feature space
MAO Wentao ZHAO Zhongtang HE Huanhuan. Model selection of extreme learning machine based on latent feature space[J]. Journal of Computer Applications, 2013, 33(6): 1600-1603. DOI: 10.3724/SP.J.1087.2013.01600
Authors:MAO Wentao ZHAO Zhongtang HE Huanhuan
Affiliation:1. College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan 453007, China
2. Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou Henan 450015, China
Abstract:Recently, Extreme Learning Machine (ELM) has been a promising tool in solving a wide range of classification and regression problems. However, the generalization performance of ELM will be decreased when there exits redundant hidden neurons. To solve this problem, this paper introduced a new regularizer that was the Frobenius norm of mapping matrix from hidden space to a new latent feature space. Furthermore, an alternating optimization strategy was adopted to learn the above regularization problem and the latent feature space. The proposed algorithm was tested empirically on the classical UCI data set as well as a load identification engineering data set. The experimental results show that the proposed algorithm obviously outperforms the classical ELM in terms of predictive precision and numerical stability, and needs much less computational cost than the present ELM model selection algorithm.
Keywords:Extreme Learning Machine (ELM)   model selection   alternating optimization   latent space   generalization ability
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号