首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic behavior of a stand-alone hybrid power generation system of wind turbine,microturbine, solar array and battery storage
Authors:M Kalantar  SM Mousavi G
Affiliation:Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
Abstract:This paper presents dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. The hybrid system consists of a 195 kW wind turbine, an 85 kW solar array; a 230 kW microturbine and a 2.14 kAh lead acid battery pack optimized based on economic analysis using genetic algorithm (GA). At first, a developed Lyapunov model reference adaptive feedback linearization method accompanied by an indirect space vector control is applied for extraction of maximum energy from a variable speed wind power generation system. Then, a fuzzy logic controller is designed for the mentioned purpose and its performance is compared with the proposed adaptive controller. For meeting more load demands, the solar array is integrated with the wind turbine. In addition, the microturbine and the battery storage are combined with the wind and solar power generation system as a backup to satisfy the load demand under all conditions.A supervisory controller is designed in order to manage energy between the maximum energy captured from the wind turbine/solar arrays, and consumed energies of the load, dump load, battery state of charge (SOC), and generated energy by the microturbine. Dynamic modeling and simulation are accomplished using MATLAB Simulink? 7.2.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号