首页 | 本学科首页   官方微博 | 高级检索  
     

离散自由搜索算法
引用本文:郭鑫 孙丽杰 李光明 江开忠. 离散自由搜索算法[J]. 计算机应用, 2013, 33(6): 1563-1570. DOI: 10.3724/SP.J.1087.2013.01563
作者姓名:郭鑫 孙丽杰 李光明 江开忠
作者单位:1. 上海工程技术大学 化学化工学院, 上海 2016202. 上海工程技术大学 基础教学学院, 上海 201620
基金项目:上海市教委学科建设专项基金资助项目(11XK11);上海工程技术大学内涵建设项目(nhky-2012-13)
摘    要:针对离散组合优化问题,给出一个自由搜索的算法。但是仅仅通过自由搜索算法求得的解,往往存在交叉现象,针对这个问题提出将离散自由搜索算法和交叉消除相结合的算法,这样不仅大大地提高了自由搜索算法运算过程的收敛速度,而且较大程度地提升了结果的质量。利用旅行商问题(TSP)标准库中的测试数据对所提算法进行了验证,结果表明该算法比遗传算法性能提高了约1.6%。

关 键 词:旅行商问题  智能算法  自由搜索  交叉消除  
收稿时间:2012-12-10
修稿时间:2013-02-26

Discrete free search algorithm
GUO Xin SUN Lijie LI Guangming JIANG Kaizhong. Discrete free search algorithm[J]. Journal of Computer Applications, 2013, 33(6): 1563-1570. DOI: 10.3724/SP.J.1087.2013.01563
Authors:GUO Xin SUN Lijie LI Guangming JIANG Kaizhong
Affiliation:1. College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
2. College of Fundamental Teaching, Shanghai University of Engineering Science, Shanghai 201620, China
Abstract:A free search algorithm was proposed for the discrete optimization problem. However,solutions simply got from free search algorithm often have crossover phenomenon. Then, an algorithm free search algorithm combined with cross elimination was put forward, which not only greatly improved the convergence rate of the search process but also enhanced the quality of the results. The experimental results using Traveling Saleman Problem (TSP) standard data show that the performance of the proposed algorithm increases by about 1.6% than that of the genetic algorithm.
Keywords:Traveling Saleman Problem (TSP)   intelligent algorithm   free search   cross elimination
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号