首页 | 本学科首页   官方微博 | 高级检索  
     

遥感图像优化迭代非监督分类方法在流域植被分类中的应用
引用本文:李天平,刘洋,李开源. 遥感图像优化迭代非监督分类方法在流域植被分类中的应用[J]. 城市勘测, 2008, 0(1): 75-77
作者姓名:李天平  刘洋  李开源
作者单位:中国科学技术大学,火灾科学国家重点实验室,安徽,合肥,230027;西南交通大学,环境科学与工程学院,四川,成都,610031
摘    要:介绍了一种新的分类方法——优化迭代非监督分类(OIUC),该方法是对传统非监督分类方法的改进。结合辅助材料,对传统非监督分类方法难以区分的部分的反复提取和细化,最后将细化的分类部分插入到原非监督分类的图像中、,以岷江源头区流域植被分类为应用实例,采用优化迭代非监督分类方法,并取得了令人满意的分类结果。

关 键 词:遥感  分类  优化迭代
文章编号:1672-8262(2008)01-75-03
收稿时间:2007-08-13
修稿时间:2007-08-13

The Application of Optimal Iteration Unsupervised Classification of Remote Sensing Image in Vegetation Classification of Watershed
Li TianPing,Liu Yang,Li KaiYuan. The Application of Optimal Iteration Unsupervised Classification of Remote Sensing Image in Vegetation Classification of Watershed[J]. Urban Geotechnical Investigation & Surveying, 2008, 0(1): 75-77
Authors:Li TianPing  Liu Yang  Li KaiYuan
Affiliation:Li TianPing, Liu Yang, Li KaiYuan(1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China; 2. School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China)
Abstract:As a new method of classification, Optimal Iteration Unsupervised Classification (OIUC) is introduced in this paper. With the help of other assistant materials, the sub - scenes that are difficuh to be classified by means of traditional unsupervised classification are extracted for more minute analysis and classification. Then, insert the subscenes e origin scene processed by traditional unsupervised classification. Applied the OIUC in vegetation classification in the Mingjiang river headwater region in 2002, the result is satisfied.
Keywords:Remote sensing    classification    optimal iteration
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号