首页 | 本学科首页   官方微博 | 高级检索  
     


Practical and scalable evolution of digital circuits
Authors:A.P. Shanthi  Ranjani Parthasarathi
Affiliation:1. Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia;2. CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia;3. School of EIE (Applied Physics), University of South Australia, Mawson Lakes, SA 5095, Australia
Abstract:This paper addresses the scalability problem prevalent in the evolutionary design of digital circuits and shows that Evolvable Hardware (EHW) can indeed be considered as a viable alternative design methodology for large and complex circuits. Despite the effort by the EHW community to overcome the scalability problems using both direct mapped techniques and developmental approaches, so far only small circuits have been evolved. This paper shows that, by partitioning a digital circuit and making use of a modular developmental approach, namely, the Modular Developmental Cartesian Genetic Programming (MDCGP) technique, it is indeed possible to evolve large circuits. As a proof of concept, a 5 × 5 multiplier is evolved for partition sizes of 32 and 64. It is shown that compared to the direct evolution technique, the MDCGP technique provides five times reduction in terms of evolution times, 6–56% reduction in area and improved fault tolerance. The technique is readily scalable and can be applied to even larger partition sizes, and also to sequential circuits, thus providing a promising path to evolve large and complex circuits.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号