首页 | 本学科首页   官方微博 | 高级检索  
     


Production of ferroboron powders by solid boronizing method
Authors:Salim Sahin  Cevdet Meric  Suleyman Saritas
Affiliation:1. Celal Bayar University, Department of Mechanical Engineering, 45140 Manisa, Turkey;2. Fatih University, Faculty of Engineering, Büyükçekmece, 34500 ?stanbul, Turkey;3. Economics and Technology University, Faculty of Engineering, Sogutozu, 06560 Ankara, Turkey
Abstract:Ferroboron is an iron-boron alloy containing 10–20% of boron by weight. Commercial ferroboron production is made by two main processes: carbothermic reaction and aluminothermic reaction. Ferroboron also occurs in steel surfaces due to boronizing, which is applied to increase surface hardness in steel. Boronizing is a thermo-chemical surface hardening treatment. The ferroboron phases like Fe2B, FeB form by diffusing of boron element into iron. These phases are very hard, wear strengths are high, and friction coefficients are low.In this study, ferroboron powder was obtained by boronizing ASC 100.29 iron powder that was used widely in powder metallurgy area. Solid boronizing method was preferred due to its advantages in applications and Ekabor-HM powder was used as the boronizing agent. The 80% ASC 100.29 and 20% Ekabor HM were mixed homogeneously and subjected to boronizing at 850–950 °C for 1–6 h. Formation and development of ferroboron phase on the samples was determined by metallographic studies depending on various treatment conditions. The X-ray diffraction analysis revealed that the Fe2B phase did form but FeB phase did not. Micro hardness distributions were measured on the powder grains. Eighteen GPa hardness was measured at Fe2B phase obtained by boronizing while hardness of non-boronized iron powders was 1.06 GPa. The thickness of ferroboron layer formed by boronizing changed with boronizing conditions. The thickness of ferroboron layer increased with boronizing temperature or boronizing time. Depending upon processing parameters, ferroboron layers was formed partially or throughout ferrous powder structure. Since boronizing can be applied to iron powders having any size or shape, ferroboron production with required shape and size is possible.Finally, a new method, namely solid boronizing method, was developed in ferroboron powder production.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号