首页 | 本学科首页   官方微博 | 高级检索  
     


Sintered stainless steels: Fatigue crack propagation resistance under hydrogen charging conditions
Authors:F. Iacoviello  V. Di Cocco
Affiliation:Università di Cassino, Di.M.S.A.T., via G. di Biasio 43, 03043 Cassino (FR), Italy
Abstract:Monophasic and multiphasic (two and three phases) sintered stainless steels were prepared both considering premixes of AISI 316LHC and AISI 434LHC stainless steels powders and using a prealloyed duplex stainless steel 25% Cr, 5% Ni, 2% Mo powder. Their fatigue crack propagation resistance was investigated both in air and under hydrogen charging conditions (0.5 M H2SO4 + 0.01 M KSCN aqueous solution; applied potential = −700 mV/SCE), considering three different stress ratios (R = 0.1; 0.5; 0.75). Fatigue crack propagation micromechanisms were investigated by means of fracture surface scanning electron microscope (SEM) analysis.For all the investigated sintered stainless, fatigue crack propagation resistance is influenced by hydrogen charging and an increase of crack growth rates dependent on the steel microstructure is obtained. Experimental results also allow to identify the sintered stainless steel obtained from the prealloyed 25% Cr, 5% Ni, 2% Mo powder as the most resistant to fatigue crack propagation in air and under hydrogen charging conditions.
Keywords:A. Stainless steel   C. Hydrogen embrittlement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号