首页 | 本学科首页   官方微博 | 高级检索  
     


Filtration of nano-particles by a gas-solid fluidized bed
Authors:Liu Kuang-Yu  Wey Ming-Yen
Affiliation:Department of Safety, Health and Environmental Engineering, National United University, Miao-Li 360, Taiwan, ROC.
Abstract:The filtration of 80 nm SiO2 and Al(2)O(3) particles in a gas stream using fluidized beds was studied. Silica sand and activated carbon (A.C.) were adopted as bed materials to filtrate 80 nm SiO2 and Al(2)O(3) particles. The collected particles were elutriated from the fluidized bed, so the filtration was a dynamic process and the variations of the removal efficiency with time were studied. Experimental results showed that the filtrations of 80 nm SiO2 and Al(2)O(3) particles with a bed material of silica sand were not dynamic processes but the filtration by A.C. was. The removal efficiencies for SiO2 and Al(2)O(3) particles using silica sand as bed material were held steady and found to be equal, between 86 and 93%. A.C. is considered to be more efficient than silica sand because it has a high specific surface area. However, the experimental data yield conflicting results. The removal efficiency of Al(2)O(3) particles fell from 92% initially to 80% at the end of test-a little lower than that obtained by filtration using silica sand. A higher voidage of A.C. than silica sand weakens the removal of nanoparticles since the diffusion mechanism dominates. The removal efficiency of SiO2 by A.C. decayed from 83 to 40% with time passed. The huge differences between the filtration efficiency of SiO2 and that of Al(2)O(3) particles by A.C. was associated with the extensive segregation of SiO2 and A.C. particles, which caused more SiO2 particles to move to the top of the bed, where they were elutriated. The weak inter-particle force for SiO2 decreased the removal efficiency also.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号