首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison between the theory and reality of full-scale step-feed nutrient removal systems.
Authors:B R Johnson  S Goodwin  G T Daigger  G V Crawford
Affiliation:CH2M HILL, 700 Clearwater Lane, Boise, Idaho 83712, USA.
Abstract:Capacity enhancement and volume reduction benefits of step-feeding fully aerobic bioreactors has been well documented. Application of step-feed technology to biological nutrient removal (BNR) systems, particularly those removing nitrogen alone or both nitrogen and phosphorus, is relatively new to the industry. In recent years, a number of full-scale step-feed facilities have been brought into service. This paper reviews nine full-scale step-feed biological nutrient removal systems--both nitrogen removal alone, and nitrogen and phosphorus removal. The objective is to compare the theoretical benefits of such systems with their actual operation. The predicted benefits of reduced bioreactor volume or increased process capacity, reduced energy usage, more robust nitrification performance, and the flexibility to tune (or de-tune) nitrification efficiency were verified in full-scale systems. Equations are also presented that may be used in the prediction of step-feed benefits. There are two primary drivers for considering a step-feed biological reactor system: 1. Reduced bioreactor volume for a defined capacity or performance or increased process capacity given a fixed bioreactor volume. 2. More robust nitrification performance. Full-scale operation of these step-feed nutrient removal systems provides a real world basis for the claimed benefits of step-feed operation. These systems have uniformly shown additional capacity. A number of them have also exhibited more robust performance, especially during storms. Where possible, side-by-side comparisons of full-scale step-feed systems with non-step-feed systems have exhibited greater process reliability and flexibility.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号