首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化算法的船舶动力定位云模型控制器设计
引用本文:郭丹丹. 基于粒子群优化算法的船舶动力定位云模型控制器设计[J]. 计算机测量与控制, 2014, 22(12)
作者姓名:郭丹丹
作者单位:1. 江苏科技大学电子信息学院,江苏镇江212003;常州信息职业技术学院电子与电气工程系,江苏常州213164
2. 常州信息职业技术学院电子与电气工程系,江苏常州,213164
摘    要:云模型控制理论是智能控制学科的新兴领域,因此如何扩展云模型的应用范围并使其走向工程化和实用化成为其研究重点;针对船舶运动模型具有不确定性和外部扰动随机性等特点,尝试将云模型应用于船舶动力定位的控制过程中;由于云模型控制器存在参数难以整定的问题,提出了基于粒子群算法的优化设计方法;针对标准粒子群优化算法容易出现早熟收敛的问题,引入自适应粒子群优化算法;仿真研究表明云模型控制及粒子群优化的可行性和有效性。

关 键 词:动力定位  云模型  控制器  粒子群优化  自适应粒子群优化
收稿时间:2014-05-05
修稿时间:2014-06-10

Dynamic ship positioning cloud model controller design based onparticle swarm optimization algorithm
Li Zhong,Guo Dandan. Dynamic ship positioning cloud model controller design based onparticle swarm optimization algorithm[J]. Computer Measurement & Control, 2014, 22(12)
Authors:Li Zhong  Guo Dandan
Abstract:Cloud model control theory is emerging field in the intelligent control subject, consequently the research on it focuses on enlarging its application and making it be engineering and practical. As the ship motion model contains uncertainty and random external disturbance, tried to apply cloud model to the dynamic positioning control process. An improved design based on particle swarm optimization (PSO) was proposed to overcome the difficulty in parameters regulation of cloud model controller. In order to avoid premature convergence in standard PSO, the adaptive PSO (APSO) was introduced. Simulation results verify that the designed cloud model controller and particle swarm optimization are feasible and effective.
Keywords:dynamic positioning  cloud model  controller  PSO  APSO
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机测量与控制》浏览原始摘要信息
点击此处可从《计算机测量与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号