首页 | 本学科首页   官方微博 | 高级检索  
     


Andreev Bound-State Tunneling and ESR Spectroscopy of High-Temperature Superconductors and Observations of Broken Time-Reversal Symmetry
Authors:L H Greene  M Aprili  M Covington  E Badica  D E Pugel  H Aubin  Y-M Xia  M B Salamon  Sha Jain and D G Hinks
Affiliation:(1) Department of Physics, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801;(2) Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439
Abstract:An emphasis on reliable materials growth and development of new fabrication techniques has allowed us to investigate the electronic structure of high-temperature superconductors by planar quasiparticle tunneling and electron paramagnetic resonance (EPR) spectroscopies. The quasiparticle (QP) density of states (DoS) is investigated by tunneling into oriented thin films of Y1Ba2Cu3O7 (YBCO) and single crystals of Ba2Sr2Ca1Cu2O8 (BSCCO). Data are obtained as a function of crystallographic orientation, temperature, doping, damage, and applied magnetic field. These data demonstrate that the observed zero-bias conductance peak (ZBCP) is composed of Andreev bound states (ABS) which intrinsically form at a symmetry-breaking interface of an unconventional superconductor, for example, a (110)-surface of d-wave YBCO. Tunneling into doped or ion-damaged YBCO provides a measure of the QP scattering rate below T c. An applied field causes Doppler shift of the ABS, arising from the scalar product between the QP velocity and the superfluid momentum, v F·P s, observed as a splitting in the ZBCP. Magnetic hysteresis of the splitting is consistent with the effects of strong vortex pinning near the interface. The directional field dependence shows that the ABS is highly anisotropic in its transport. These results, plus in-plane crystallographic orientational dependence on single-crystal BSCCO, demonstrate the d-wave symmetry of this superconductor. Below sim 8 K and in zero applied field, the ZBCP splits, indicating a transition into a superconducting state with spontaneously broken time-reversal symmetry (BTRS). EPR experiments are used to detect directly the spontaneous formation of the magnetic moments in the BTRS state.
Keywords:Andreev bound state  tunneling spectroscopy  electron paramagnetic resonance spectroscopy  broken time-reversal symmetry  YBCO  BSCCO
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号