首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue-crack propagation behavior in monolithic and composite ceramics and intermetallics
Authors:R. O. Ritchie  R. H. Dauskardt  K. T. Venkateswara Rao
Abstract:We study microstructural mechanisms of fatigue crack growth in advanced monolithic and composite ceramics and intermetallics. Much attention is devoted to the contribution of cycling loading to the hindrance of mechanisms that lead to a considerable increase in toughness (crack-tip shielding) of these materials. For example, in intermetallics with a ductile phase, such as beta-TiNb-reinforced gamma-TiAl or Nb-reinforced Nb3Al, a significant increase in toughness caused by the presence of uncracked ductile phase inside a crack is retarded under cyclic loading because ductile particles immediately fail by fatigue. Similarly, in monolithic ceramics, e.g., in alumina (aluminum oxide) or silicon nitride, the significant plasticization appearing under monotonic loading is greatly diminished under cyclic loading due to gradual wear at the grain-matrix interface. In fact, the nature of fatigue in such low-plasticity materials differs essentially from the well-known mechanisms of fatigue in metals and is governed, first of all, by a decrease in shielding, which depends on the loading cycle and time. The susceptibility of intermetallics and ceramics to fatigue degradation under cyclic loading affects seriously the possibility of structural use of these materials in practice. In particular, in this case, it is difficult to apply strength calculation methods that take into account the presence of defects and to implement life-prediction procedures.Center for Advanced Materials, Lawrence Berkeley Laboratory, University of California, USA. Published in Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 30, No. 3, pp. 7–35, May–June, 1994.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号