首页 | 本学科首页   官方微博 | 高级检索  
     

三维针刺C/C-SiC复合材料预制体工艺参数优化EI北大核心CSCD
引用本文:戚云超,方国东,梁军,谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化EI北大核心CSCD[J]. 材料工程, 2020, 0(1): 27-33
作者姓名:戚云超  方国东  梁军  谢军波
作者单位:哈尔滨工业大学特种环境复合材料技术国家级重点实验室;北京理工大学宇航学院;天津工业大学先进纺织复合材料教育部重点实验室
基金项目:国家自然科学基金资助项目(11732002,11672089)
摘    要:基于误差反向传播(BP)神经网络与改进的遗传算法建立三维针刺C/C-SiC复合材料预制体工艺优化的代理模型,获得针刺工艺参数与复合材料刚度性能之间的关系。利用BP网络实现复合材料刚度性能预测,BP网络的预测值与有限元计算结果吻合程度较好,模型训练误差最大为0.526%,测试数据误差最大为0.454%,BP网络预测精度高。对传统遗传算法的遗传策略和优化策略进行改进,利用两种改进的遗传算法对针刺工艺参数进行优化。优化后的工艺参数显著提高了材料的刚度性能,其中面内拉伸模量分别提高了11.07%和11.48%,面外拉伸模量分别提高了49.64%和48.13%,复合材料的综合刚度性能分别提高18.17%和18.21%。

关 键 词:针刺复合材料  BP神经网络  刚度性能预测  遗传算法  工艺优化

Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites
QI Yun-chao,FANG Guo-dong,LIANG Jun,XIE Jun-bo. Optimization of process parameters of three-dimensional needled preforms for C/C-SiC composites[J]. Journal of Materials Engineering, 2020, 0(1): 27-33
Authors:QI Yun-chao  FANG Guo-dong  LIANG Jun  XIE Jun-bo
Affiliation:(Science and Technology on Advanced Composites in Special Environments Key Laboratory,Harbin Institute of Technology,Harbin 150080,China;School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Advanced Textile Composite Materials of Ministry of Education,Tianjin Polytechnic University,Tianjin 300387,China)
Abstract:A surrogate model was established to optimize needling process parameters of three dimensional needled C/C-SiC composites by using back propagation(BP)neural network and improved genetic algorithm.The relationship between needling process parameters and composites stiffness was obtained.The stiffness prediction obtained by BP neural network is in good agreement with the finite element calculated results.The maximum error of training data is 0.526%,and the maximum error of test data is 0.454%.Thus,the BP neural network model exhibits the high prediction accuracy.The genetic and optimization strategies of genetic algorithm were improved to optimize the needling process parameters.The calculated needling process parameters by the model can significantly improve the stiffness of the C/C-SiC composites.The in-plane tensile modulus increase by 11.07%and 11.48%,and the out-of-plane tensile modulus increase by 49.64%and 48.13%,respectively.The comprehensive stiffness performance of composite material increase by 18.17%and 18.21%,respectively.
Keywords:needling composites  BP neural network  stiffness prediction  genetic algorithm  process optimization
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号