首页 | 本学科首页   官方微博 | 高级检索  
     

基于CAFOA-GRNN的包装机热封温度传感器的故障检测
引用本文:陈小康,涂煊,许维东. 基于CAFOA-GRNN的包装机热封温度传感器的故障检测[J]. 包装工程, 2019, 40(13): 207-213
作者姓名:陈小康  涂煊  许维东
作者单位:上海理工大学,上海,200093;上海工业自动化仪表研究院有限公司,上海,200233
摘    要:目的 为了实现自动包装机热封工艺中温度传感器的故障实时故障检测。方法 使用广义回归神经网络(General Regression Neural Network, GRNN)构建了热封温度传感器状态自动检测网络,再采用混沌加速果蝇优化算法(Chaos Accelerated Fruit Fly Optimization Algorithm , CAFOA)进行广义回归神经网络的学习因子优化选取,求解出最优学习因子。通过建立CAFOA-GRNN自动检测模型,再结合统计学中置信区间的方法,对故障进行诊断分类。结果 在传感器故障实验中,将理想故障函数与历史运行数据叠加,产生故障数据集,并将其用于验证建立的模型,获得了较好的检测效果,准确率较高。结论 该方法实现了传感器故障的实时检测,可以用于提高生产的可靠性,具有一定的工程实用价值。

关 键 词:广义回归神经网络  混沌加速果蝇优化算法  学习因子  置信区间
收稿时间:2018-12-11
修稿时间:2019-07-10

Packaging Machine Heat Sealing Temperature Sensor Fault Detection Based on CAFOA-GRNN
CHEN Xiao-kang,TU Xuan and XU Wei-dong. Packaging Machine Heat Sealing Temperature Sensor Fault Detection Based on CAFOA-GRNN[J]. Packaging Engineering, 2019, 40(13): 207-213
Authors:CHEN Xiao-kang  TU Xuan  XU Wei-dong
Affiliation:1.University of Shanghai for Science and Technology, Shanghai 200093, China,2.Shanghai Institute of Process Automation and Instrumentation, Shanghai 200233, China and 1.University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:The paper aims to realize the fault real-time fault detection of the temperature sensor in the heat sealing process of the automatic packaging machine. The generalized regression neural network (GRNN) was used to construct a state automatic detection network of heat-sealed temperature sensor, and then the Chaos Accelerated Fruit Fly Optimization Algorithm (CAFOA) was used to study the generalized regression neural network. Factor optimization was selected to solve the optimal learning factor. By establishing a CAFOA-GRNN automatic detection model, combined with the statistical confidence interval method, the faults were classified and diagnosed. In the sensor failure experiment, the ideal fault function was superimposed with the historical operation data to generate the fault data set, to verify the established model. Good detection effect was obtained, and the accuracy was high. The method realizes the real-time detection of sensor failure, and can be used to improve the reliability of production, and has certain engineering practical significance.
Keywords:general regression neural network   chaos accelerated fruit fly optimization algorithm   learning factor   confidence interval
本文献已被 万方数据 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号