首页 | 本学科首页   官方微博 | 高级检索  
     

结合注意力机制的核相关滤波目标跟踪
引用本文:欧阳城添,汤懿,王曦. 结合注意力机制的核相关滤波目标跟踪[J]. 光电子.激光, 2019, 30(4): 428-433
作者姓名:欧阳城添  汤懿  王曦
作者单位:江西理工大学 信息工程学院,江西 赣州 341000,江西理工大学 信息工程学院,江西 赣州 341000,江西理工大学 信息工程学院,江西 赣州 341000
基金项目:国家自然科学基金(61561024,61462034)、江西省自然科学基金项 目(20151BAB207035)和江西省教育厅项目(GJJ160632) 资助项目(江西理工大学 信息工程学院,江西 赣州 341000)
摘    要:针对目标跟踪中的旋转、快速运动、遮挡等问题 。提出了结合注意力机制的核相关滤波跟踪方法。该方法利用卷积 神经网络提取卷积特征;利用两个样本的相似度矩阵计算注意力权值,并结合注意力权值和 核相关滤波器;使用两个分类 器分别检测目标和背景,并依据两个分类器的响应值实现模型的自适应更新。选取公开数据 集上具有复杂场景的视频序列 进行测试,并与多种跟踪算法在跟踪精确度和成功率上进行定量分析,该算法与原核相关滤 波算法相比,精确度和成功率 分别提高了18.9%、58.7%。实验结果表明,添 加了注意力机制和自适应更新的核相关滤波,较好的解决了遮挡、旋转等 问题,相比其他算法具有更好的鲁棒性和适应性。

关 键 词:目标跟踪   卷积特征   核相关滤波器   注意力机制
收稿时间:2018-09-14

Kernelized correlation filter object tracking combined with attention mechanism
OUYANG Cheng-tian,TANG Yi and WANG Xi. Kernelized correlation filter object tracking combined with attention mechanism[J]. Journal of Optoelectronics·laser, 2019, 30(4): 428-433
Authors:OUYANG Cheng-tian  TANG Yi  WANG Xi
Affiliation:College of Information,Jiangxi University of Science and Technology,Ganzhou 341000,China,College of Information,Jiangxi University of Science and Technology,Ganzhou 341000,China and College of Information,Jiangxi University of Science and Technology,Ganzhou 341000,China
Abstract:Visual tracking remains a challenging problem due to the scale change,deformatio n,occlusion,motion blur and environmental change of the target.A kernelized correlation filter object-tracking approach combined with atte ntion mechanism is proposed in this paper,utilizing attention model and convolution features to improve the robustness of the kernel ized correlation filter algorithm.The convolution neural network is introduced to extract the convolution features.T he attention weights are obtained using the similarity matrix of two samples,and combined with kerneliz ed correlation filters.Two classifiers are used to detect objects and background,and the adaptive update of the model is ach ieved according to the response values of the two classifiers.Compared with the original kernelized correlation filter algorit hm on typical video sequences in public data sets, the success rate and precision have been promoted by 18.9% and 58.7% in this pap er.The experimental results on public data sets show that the proposed approach maintains its good robustness and adaptability even in complex scenes.
Keywords:
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号