首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的电池剩余电量预测
引用本文:舒服华. 基于最小二乘支持向量机的电池剩余电量预测[J]. 电源技术, 2008, 32(7)
作者姓名:舒服华
作者单位:武汉理工大学,机电工程学院,湖北,武汉,430074
摘    要:提出了一种最小二乘支持向量机的电池剩余电量预测新模型。以电池端电压和新旧程度为输入,电池的剩余电量为输出,通过电池充放电实验获得数据样本。以实验数据为基础,建立最小二乘支持向量机模型,利用训练好模型预测电池在静置状态下的剩余电量。该方法具有建模速度快、预测精度高、操作简便等优点。不仅克服了常规的BP预测模型的不足,而且性能优于标准支持向量机预测模型。

关 键 词:静置电池  剩余电量  预测模型  最小二乘支持向量机

A prediction model for remaiming capacity in bakeries based on least square support vector machine
SHU Fu-hua. A prediction model for remaiming capacity in bakeries based on least square support vector machine[J]. Chinese Journal of Power Sources, 2008, 32(7)
Authors:SHU Fu-hua
Abstract:A novel prediction model for remaining capacity of batteries based on least square support vector machine(LS-SVM) was proposed. With battery ending voltage and degree of new as inputs,remaining capacity of resting batteries as output,test was taken to get data samples.Throghout data samples above,LS-SVM model was established,and remaining capacity of batteries can predict by the model. Experimental results show that the construction speed of this LS-SVM model is higher than that of the SVM model,while the prediction errors are less. Moreover,compared with BP model,the accuracy and speed of prediction are much higher than that of the former.
Keywords:resting batteries  remaining capacity  prediction model  least square support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号