首页 | 本学科首页   官方微博 | 高级检索  
     


A mathematical model for kinetic study of analyte permeation from both liquid and gas phases through hollow fiber membranes into vacuum
Authors:Sysoev
Affiliation:Moscow State Engineering Physics Institute, Technical University, Russia. alexey@sysoev@msl.mephi.ru
Abstract:A mathematical model and a Matlab-5 computer code have been developed to study the dynamic response of the hollow fiber membrane probe. The depletion layer formation at the sample/membrane interface is taken into consideration by the mathematical model for the liquid mobile phase. The code produces concentration profiles within a sample feed stream and in the membrane. Flux values at the vacuum side of the membrane can also be calculated as a function of time. The method can be applied both for gas and liquid feed streams. Concentration profiles in a mobile phase and the flux of analytes through the hollow fiber membrane inlet have been studied with this simulation technique as a function of the liquid-phase flow rate. The influence of the formation of a layer of the analyte depletion during the dynamic response has been considered. The shape of the depleted layer and selectivity of permeation from a liquid mobile phase through the membrane into the vacuum are shown to be dependent on the mobile-phase flow rate. In addition, for studied conditions, formation of a depletion layer is demonstrated to be fast compared with membrane diffusion. Thus, if a homogeneous aqueous sample is coming through the inlet cross-section of a hollow fiber membrane containing pure water, the response time mostly depends on analyte diffusivity in the membrane. However, if the aqueous sample is coming through the inlet cross-section of a hollow fiber membrane containing clean air, response time also depends on equilibrium analyte concentration in the depletion layer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号