首页 | 本学科首页   官方微博 | 高级检索  
     


Design of experiments approach to the study of tribological performance of Cu-concentrate-filled PPS composites
Authors:MH Cho  S Bahadur  JW Anderegg
Affiliation:aDepartment of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;bDOE, Ames Laboratory, Ames, IA 50011, USA
Abstract:The tribological performance of copper-concentrate (CC) mineral deposit as the filler in polyphenylene sulfide (PPS) was studied as a function of the filler proportions and sliding test variables. CC is a complex mixture of CuS, FexOy, SiO2, Al2O3, and other trace materials. The design of experiments based upon L9 (34) orthogonal arrays by Taguchi was used. Sliding tests were performed in the pin-on-disk configuration against a hardened tool steel (55-60 HRC) disk. The improvement in wear resistance of PPS was considerable with the use of fillers. The lowest steady state wear rate of 0.0030 mm3/km was obtained for PPS+20%CC+15%PTFE composition. It was two orders of magnitude lower than that of unfilled PPS. The variations in steady state coefficient of friction with the changes in filler proportions and sliding test variables were small. The transfer film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray photoelectron microscopy (XPS) was used to detect chemical reactive species developed during sliding, especially in the interface between transfer film and its counterface. Wear particles and the polymer worn surfaces were analyzed by energy dispersive spectroscopy (EDS) for elemental distribution.
Keywords:Design of experiments  Taguchi  Mineral filler  Wear  Friction  Transfer film
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号